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A representation for the invariant scattering amplitude A (s,4,#) is constructed that satisfies elastic uni-
tarity in the s channel. The development is based upon the usual fixed-s dispersion relations and rigorous
expansions of the partial-wave amplitudes. The amplitude has the singularity structure of the Mandelstam
representation and leads to new expressions for the double spectral functions in the elastic region. The
relationship of resonances to the Mandelstam representation is clarified. The continuation of the unitary
scattering amplitude to the inelastic region and the physical regions of the crossed channels is discussed.

I. INTRODUCTION

N an earlier article! a representation for the invariant
scattering amplitude A4 (s,t,#) was constructed that
satisfied elastic unitarity in the s channel. The repre-
sentation had a structure like that of the Mandelstam
representation,? yet it differed in some crucial details
that led to difficulties with crossing symmetry and
inelastic unitarity. The unitary scattering amplitude
was developed by using the N/D method? to construct
unitary partial-wave amplitudes and by using a class of
Legendre sums to sum the Legendre expansion of the
full amplitude. In the process it was necessary to make
an Ansatz for the numerator function in the N/D
representation and it was conjectured that the diffi-
culties could be traced to a failure of the Ansaiz.

The purpose of this work is to construct unitary
scattering amplitudes without the necessity of ques-
tionable Ansatzen. The major assumption is the validity
of the fixed-s dispersion relations, or equivalently, the
validity of the Froissart-Gribov formula in the elastic
region. Together with rigorous expansions for the partial-
wave amplitudes that are consequences of elastic
unitarity, this assumption leads to scattering amplitudes
that are manifestly unitary. It is shown that the
singularity structure in the momentum-transfer vari-
ables is precisely that of the Mandelstam representation
for s in the elastic region. Also, the unitary scattering
amplitude yields new expressions for the elastic-region
double spectral functions. They are expressed as finite
sums, for finite values of (s,f) or (s,u), and are de-
termined by two real functions in contrast to the
two complex functions of the usual Mandelstam
representation.

It is shown that the construction procedure goes
through for an arbitrary number of subtractions in the
original fixed-s dispersion relation and that the formulas
for the double spectral functions are unchanged in the
presence of subtractions. The construction also sheds
light on the relation of resonances to the Mandelstam
representation. It is found that the existence of reso-
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nances requires the presence of subtractionlike terms in
the representation. That is, the double spectral func-
tions themselves cannot give rise to resonances in the
elastic region. The possible connection of this fact to
recent conjectures on the finite-energy sum rules is
discussed.

The continuation of the unitary scattering amplitude
to the inelastic region and to the physical regions of the
crossed channels requires further assumptions related to
the Froissart-Gribov formula. The inverse amplitude
representation for the partial waves is used to extend
the expansions out of the elastic region. In contrast to
the results of I, a simple prescription is found that
provides for the additional singularities of the Mandel-
stam representation in the inelastic region required by
crossing symmetry. The continuation to the crossed-
channel physical regions is a different story, however.
Difficulties apparently related to the existence of
essential singularities on the second sheet prevent the
continuation of the present form of the amplitude to the
crossed channels. Possible methods of surmounting
these difficulties are outlined.

To simplify kinematical problems in the construction
the scattering of distinguishable, spinless particles of
equal mass is considered. This permits a general ap-
proach to questions of crossing relations. The unequal-
mass situation will not give rise to serious complica-
tions, but the extension to spin will be somewhat more
cumbersome. The expansions of the partial-wave ampli-
tudes central to the development are given in Sec. II,
while Sec. IIT contains the details of the construction
procedure and the resulting unitary scattering ampli-
tude. The elastic-region double spectral functions im-
plied by the representation are determined in Sec. IV.
The situations with subtractions and with resonances
are presented in Secs. V and VI, respectively, and the
questions of the continuation of the representation to
the inelastic region and the crossed-channel physical
regions are dealt with in Secs. VII and VIII. Section IX
is devoted to conclusions, and some necessary mathe-
matical details are presented in an Appendix.

II. PARTIAL-WAVE AMPLITUDES

The scattering of distinguishable, spinless particles of
equal mass is described by an invariant scattering ampli-
tude A4 (s,t,u), where s, ¢, and # are the usual Mandel-
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stam variables satisfying? s++{-+#=1. The amplitude is
normalized so that the elastic unitarity condition in the

s channel reads

ImA (s,2)= (4m) [ (s—1)/s ]
X / A A*(5,270)A (5,205), (1)

where z is the cosine of the center-of-mass scattering
angle and the integration runs over all angles of the
intermediate meson pair. The partial-wave amplitudes
are related to the scattering amplitude in the usual way,

A(5,2)=2(24+1)Pi(2)4.:(s),

Az(S)'—‘E/ dz P1(2)A (s,2), @
2/

and by virtue of (1) satisfy the elastic unitarity condition
ImA(s)=[(s—1)/s]"*| 4:(s)|2. ©)

Two well-known consequences of (3) are, first, the
phase shift parametrization

Ai(s)=[s/(s—1)]"2 sins; e?t, 4)

where 8, is real in the elastic region, and second, the
inverse amplitude representation

Ay(s)=5"P[u(s)—i(s— )], ©)

where we have adopted the form used by Martin.’ In
(5) the branch cut of the function (s—1)Y2is taken to be
[1, ) and the function is real on the cut with a non-
negative imaginary part on the first sheet. Similarly, the
function s*2 is given the cut (—o, 0] and is positive
for 0<s.

It is convenient for our purposes to express the in-
verse amplitude representation in terms of the inverse

of ¢l(s))
A1(s)=s"i(s)[1—i(s— 1) ()], (6)

with ¢,(s)=¢;71(s). ¥:(s) is real analytic in the s plane
cut along (—,0] and [s;, ), where s; is the first
inelastic threshold. In the elastic region ¢;(s) is real,
related to the phase shift by

Yi(s)=(s—1)712 tans,,

and an important feature of (6) is that A;(s) satisfies
elastic unitarity for arbitrary real ¥,(s).

The present method for constructing unitary scat-
tering amplitudes utilizes the expansion of Im4,(s) in
powers of Red ;(s). Equation (3) provides a quadratic
equation in Im4 ;(s) and the two roots of this equation
hold for different ranges of ImA ;(s), or equivalently, for
different ranges of the phase shift. The two roots can be
expanded in powers of Red ;(s) with the results (sup-

4 The units Z=c=2m=1 are u
5 A. Martin, Nuovo Cimento 47 265 (1967).
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pressing the angular-momentum subscript for the
moment)

e G

- r‘R A 2k+2 7
A ()= E o (RA T, ()
and
ImA (s)=[s/(s—1)]
T (k+3)ak(s— 1)+

[Red (s)*2. (8)

- L

T (k+2)T(3)s+
The first of these expansions [Eq. (7)] is valid for
0<[(s—1)/s]"* ImA(s)< %,
or in terms of the phase shift 6,
—irtnr Lo intnr,

where # is a suitable integer. The second expansion
[Eq. (8)] holds for

$<LG—1)/s]” ImA(s) <1

or

Lrtnr <o intnr.

We note that the hypergeometric expansions in (7) and
(8) are absolutely convergent within and on the unit
circle, or for

[Red (s)| <3[s/(s—1) 1",

so there is no question of the convergence of the sums in
the elastic region. Instead it is a question of choosing the
appropriate expansion depending upon the magnitude
of the phase shift. This will have important conse-
quences in the construction of unitary scattering
amplitudes.

Finally, in anticipation of questions of inelastic uni-
tarity, we observe that (7) and (8), with suitable
modifications, enjoy a greater range of validity. Using
the inverse amplitude representation [Eq. (6)], we
define

Ar(s)=s"Y()[1+ (s—1¥*(s) I
and ©)
Ar(s)=[s(s— D)2 ()[1+ (s—DP*(s) 1.

In the elastic region, where y/(s) is real, A and A are
simply the real and imaginary parts, respectively, of the
partial-wave amplitude. In the inelastic region A and
Ar become complex but the partial-wave amplitude is
still given by

A(s)=Agr(s)+iA1(s).

The useful aspect of this separation is that the expan-
sions (7) and (8) hold with Red(s) — Ag(s) and
ImA (s) — A1(s) in complex domains discussed in detail
in the Appendix. As a consequence we will be able to
extend the unitary scattering amplitude into the
inelastic region in a natural way.
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III. CONSTRUCTION OF THE UNITARY
SCATTERING AMPLITUDE

Our purpose in this section is to sum the Legendre
series [Eq. (2)] to obtain a scattering amplitude that
automatically satisfies elastic unitarity. The first re-
quirement is a statement of the / dependence of the
partial-wave amplitudes. This is provided by the
Froissart-Gribov formula:

Ay(s)=2[ (s— r T / Y ()0 142/ (s—1)]

1

0

2= D) (s— DT / du Au(u,5)
XQu[142u/(s—1)],

where 4, and 4, are the absorptive parts in the crossed
channels. The necessary subtractions in (10) have been
suppressed. We will discuss the question of subtractions
later on, and it will be shown that they are readily
incorporated into the final representation.

The Froissart-Gribov formula expresses the I depend-
ence of Red (s) as weighted integrals over Legendre
functions of the second kind. At the same time, elastic
unitarity provides rapidly convergent expansions [Eqs.
(7) and (8)] for ImA,(s) in powers of Red ;(s). We can
therefore express the unitary partialwave amplitudes in
terms of two unknown real functions (apart from
subtractions) that we introduce as follows:

(10)

Red y(5)=2[ (s— 1)a ] / " ()

1
+ (=1 fulx,5)] QL 1+24/ (s—1)].
In the elastic region we have the identification
fe (x,s) =Red t(x:s) ’ fu(x,s) =Red u(”rs) ’

so that with reference to the Mandelstam representation
we would expect f, and f, to be given by principal-value
integrals over double spectral functions (dsf) together
with contributions from the ‘“third” dsf. At the first
inelastic threshold, however, it will be useful to have f;
and f, develop imaginary parts in keeping with the
discussion of the previous section. In the suggestive
framework of the Mandelstam representation this can
be viewed as applying the principal-part integrations
only to the “first wings” of the spectral functions, while
the “‘second wings” representing inelastic effects con-
tribute the imaginary parts.

To simplify the analysis of the construction pro-
cedure, we begin with a restricted class of amplitudes.
We suppose that in the elastic region none of the partial-
wave phase shifts exceed 3w in magnitude. It follows
from the results of the previous section that each
partial-wave amplitude can be written in the unitary

(11)
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form (k+1)ak( )oH2
. Det+3)4(s—1
Al(s)=ReAz(S)+1Zk: T (k+2)T(})skH
X[Red(s)P*2, (12)

with Red (s) given by (11). The / dependence of (12)
occurs as multiple products of Legendre functions, and
the Legendre sums over such products were evaluated
in I. We define
Iﬂ(s7t; X1,° " ’x%)
=2(s—1)71>;Q2H-1)P,(142t/(s—1))
XQui(1+2x1/(s—1))X - - -

XQu(1+2x,/(s—1)) (13)

and obtain from I,
Ii(s,t; o) = (t1—1)7",
I"(s;t; X1, "x")
° dty il dis

- / R — a4
ty(an20) K @%001) J a0, 00 K (X3,t1)02)

® dtn—l
X f ,
t4(2n, tnaz) (tn_.]__ t)K (xn,tn—z,tn—l)

where the latter form holds for #>2. The functions
introduced in (14) are given by
t1(a,0) = (s—1)[a2(b4s—1)2L b1 2(a+-s—1)1V2 ]2,
K (a)be)=[c—t,(a,0) ]"*[c—i~(a,b) ] (15)
=[a?+ b2+ c?—2ab—2ac—2bc—4abc/(s— 1) ]2,
and K (a,b,c) is the Mandelstam kernel.

A further detail must be taken care of before we
proceed to write down the unitary scattering amplitude.
It concerns the complications due to the two different
crossed channels. We define two sets of functions,
F® and F,™, by
F® (xly' : '7xms)+ (_ l)lFu(n) (xly' o 7xn;s)

=[fi(x1,8)+ (—1)"fu(®1,5)]

XL f(@2,8)+ (—1) fulw2,5)]

X XLfe@ny$)+ (=D fulwa,s)],  (16)
meaning that the terms must be multiplied out and
collected into two groups, one with and the other
without the factor (—1)% The terms without the factor
will appear with ¢ denominators in the scattering
amplitude; the terms with the factor will appear with »
denominators.

The Legendre sum of the unitary partial-wave ampli-

tudes [Eq. (12)] yields a unitary scattering amplitude
that can be represented as

A(sh)=AO(stu)+ Y AD(shw), (A7)
=2

(even)

1 p2dx fulw,s) 1 p2dx fulz,s
A<1)(S,t,u)=—f fa( N Sul,8)
TJ1

where

, (18)

x—t TJ1 x—u
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and for n=2,4,6, ---,

i2—T (In—1)

A (s,tu)=
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/ / do, -+ -, dn
TGt sG-S, ),
XLF ™ (21, + 200, 5)n (5,5 21,7+ 20)FFo™ (w1, + + @, ) (5,05 %1, + * ,%a) 1.

(19)

In particular, the first term in the expansion of the imaginary part of the amplitude takes the form

2 e e e dedydt’[fu(,8) f1(9,8)+ fu(@,8) fu(y,5)]
A® (s 1) =— / / f
7"2 1 1 t4.(z,9) [S(S_' 1)]”2(5'—1)1{(“’»3’,5')

+2_i /” /” /“" dudydw'[fo(2,5) fu(y,8)+ fu(2,5) f1(y,5) ]
mJ1J1 tp(z,1) '

It is not difficult at this point to verify that 4 (s,f,u)
as given by (17), (18), and (19) satisfies the elastic
unitarity condition [Eq. (1)], provided f, and f, are
real. This is done by means of the identity

dgnlk(s;tfn; X1, ',xk)IM(s7tnl'; Xrt1," ',x/c+m)
(21)

and the three related identities obtained by replacing
the triplet of variables (£sn,fni,f) in (21) by the triplets
(% snsthnist), (Ernythniy), and (#sn,tns,0). These identities
follow directly from (13) and the properties of the
Legendre polynomials.® It is also helpful to note the
identities

oy [

= 2(8— 1)—llk+m (S)t; X1, )xk+‘m) )

F (m = B (O m - F (OF m)
F btm = F (OF L F (DR m)

which follow from the definition (16).

The unitary scattering amplitude constructed above
is the central result of this paper. There remain however
the following points to be discussed: (i) the determina-
tion of the double spectral functions in the elastic region
implied by the representation, (ii) the modifications
introduced by subtractions in the Froissart-Gribov
formula, (iii) the lifting of the restriction |8:(s)| <im
and, in particular, the relationship of resonances to the
Mandelstam representation, (iv) the continuation of the
amplitude into the inelastic region, and (v) the con-
tinuation of the amplitude to the physical regions of the
crossed channels and the implications of crossing
symmetry. These points are treated in the subsequent
sections.

IV. ELASTIC-REGION DOUBLE
SPECTRAL FUNCTIONS

The unitary scattering amplitude developed above
has the structure of the Mandelstam representation for
s in the elastic region, so it is straightforward to de-
termine the double spectral functions. The s-channel

6 See, for example, Ref. 1.

(20)

[S (S-° 1)]1/2 (%'— “)K(x,y,“')

absorptive part in the elastic region is simply

4 S(S’t;u') =—1 Z A (S:tsu) ’
(szxzx)

with 4™ (s,t,u) given by (19), and the double spectral
functions p,:(s,f) and p,.(s,#) are defined to be the
discontinuities for positive ¢ and #, respectively, of
A, (s,t,u). These discontinuities come only from the
functions I, in (19), and it is convenient to define, for
n22,

J"(s;t; Xy '7xn)
= 2miy [ L.(s, t+1i€; x4, -

—I.(s, t—1¢€; %1, -
® dly

. xn)
.., xn):l
fw dll
t4(21,22) K(xlyx%ll) (23, 1) K (ws,t1,t2)
® Bt =ty (Fnytn2) ]
J)
t

b
Gt tny) K (#n—t,tns,tn2) K (Xn,tn—2,1)

(22)

where the quantities in the integrals are defined by (15).
As the simplest case we have

Jg(S,t; x’y) =0[t_t+ (x)y)]K_l (x)y;t) .

The double spectral functions can then be written as
infinite sums:

pi(s)=2 psM(s,0), (23)
. (ev-_ég)
with 23T (1)
" _.n-_.
Pst(n) (S1t)= : :
QT Gt DL~ D02
xf.../ dxl’..-’dxn
1 1
XFt(n) (xl, ° ”xﬂys)]"(s)t; X1, '}x") ) (24)

and p,(s,%) is obtained from (23) and (24) by replacing
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each by u. In particular, the first term in the expansion
of the double spectral function takes the form

poi® (s,0)

2 H dxdy[11(5) 1 05)+ fu(8,9) 1 0,9)]
w) [ss— 1)K (s,,)
xe[t_l-i-(xyy)]'

The reader will recall from experience with the Mandel-
stam representation that the integral in (25) is a finite
integral for finite values of ¢; the step function cuts off
the integral for sufficiently large values of x or 4.
Similarly, all of the integrals in (22) and (24) are finite,
for finite ¢, because of the step functions.

It is of interest to compare (25) with the expression
for the double spectral function obtained by Mandel-
stam.? Mandelstam’s result for the complete double
spectral function in the elastic region is obtained by
making the replacement

[fl (xis)ft (y)s)+fu (xys)fu (y,s)]
- [A 2* (x,s)A t(yrs)+A u* (:X?,S)A u (:V;S)]

in (25). Since f:(x,s)=Red :(x,s), i= ({,u) in the elastic
region, this comparison indicates two features of the
expansion (23). First, the higher terms in the expansion
of ps: correspond to expansions of ImA4, and Im4, in
powers of ReA ; and Red, because the explicit contribu-
tions of the real parts are completely contained in p,,®.
Identical comments apply of course to peu(s,%).

Second, because the real parts of the crossed-channel
absorptive parts are known to determine completely the
double spectral function in a domain bordering the
leading Landau curve, the higher-order terms in the
expansion (23) must have Landau curves further from
the origin in the s-¢ plane. This is easily verified by
direct calculation. We denote the domain where p, . is
nonvanishing by

(25)

1310 (s).

The leading Landau curve, {=t®(s), is determined by
the step function in (25) to be
1®(s)=mint; (v,5), 1<®,y<o.

Since the function #.(x,y) is monotonic in its two
variables [Eq. (15)], we obtain the familiar result

1@ (s)=t,(1,1)=4s/(s—1).

The Landau curves for the higher-order terms are
found from (22) and (24) to satisfy the recurrence
relation

1D (5) =1, [t (5),1],

which in turn leads to the inequality (D (s)> ¢ (s),
The first few expressions for the higher Landau curves

UNITARY SCATTERING AMPLITUDES. 11
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are computed to be
1® (5)=16s(s+1)%/(s—1)%,
1® (s) =4s(35+1)%(s+-3)%/(s—1)5,
and the asymptotic limits of the curves are
(02 (5) 2 4771/ (s= D)™,

26
1™ (s) — n?. 26)

It follows that for any point in the s-f plane that the
sum (23) is a finite sum, and the number of terms in the
sum, by (26), is roughly $+/%.

The unitary scattering amplitude constructed in Sec.
111 yields double spectral functions in the elastic region
that are determined by two real functions in contrast to
the two complex functions of the conventional Mandel-
stam representation. It will be shown in the following
sections that these expressions for the double spectral
functions are unchanged by the presence of subtraction
terms in the Froissart-Gribov formula or by the exist-
ance of resonances in the partial-wave amplitudes.

V. SITUATION WITH SUBTRACTIONS

The results obtained so far have been based upon the
Froissart-Gribov formula [Eqgs. (10) and (11)] written
without subtractions for any of the partial-wave ampli-
tudes. This is equivalent to assuming that the fixed-s
dispersion relation holds without subtractions. It is
known from the work of Jin and Martin’ that two
subtractions are sufficient for s in the unphysical region
0<s<1, and the optical theorem suggests that two
subtractions are necessary in this region as well. For s in
the elastic region, it is very plausible that a finite
number (and probably a small number) of subtractions
suffice, Even in the case of indefinitely rising Regge
trajectories,® with absorptive parts A.(t,s)~1*®, the
number of subtractions required is expected to increase
at most linearly with s. We will assume that there is a
finite range for s, including the elastic region, in which a
finite number of subtractions in the fixed-s dispersion
relation is sufficient.

This assumption permits us to write the fixed-s dis-
persion relation (for s in the specified range) in the form

A ()

—lo)™(t'—1)

| (w—ug)m [” du'd.(u',s)
T )
T 1 (' —ue)™(u'—u)
where G(s,t,1) consists of polynomials in ¢ and % of order

(m—1) with coefficients that are, in general, complex
functions of s. The simple observation that we wish to

7Y. S. Jin and A. Martin, Phys. Rev. 135, B1375 (1964).
8 See, for example, S. Mandelstam, Phys. Rev. 166, 1539 (1968).

(t—=t)™ =
A (S,t,'u») = G(S,t,u)“'r‘ [ (t,

@7
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make is that the presence of the subtraction terms
modifies the Froissart-Gribov formula for /< only by
an additional function of s,

A1(5)=Ba(s)+2[ (s— DT / " A

1

XQi[14+2t/(s— D]+ 2(— D) [(s—)r ]
Xfw du Ay (u,5)Qi[142u/(s—1)]. (28)

B(s) contains not only the partial-wave projection of
G(s,t,u) but also terms involving integrals over the
absorptive parts (but without Legendre functions).
These integrals have the property of cancelling the
divergences of the explicit integrals in (28) so that 4 ;(s)
is finite, as it must be; for /2> m, B;(s)=0.

Since the partial-wave amplitudes must be unitary,
the construction procedure for the unitary scattering
amplitude goes through as in Sec. III. One expands
ImA;(s) using (7) or (8), depending upon the magni-
tude of the phase shift (this point is discussed in Sec.
VI), in powers of Red;(s) as given by (28). The
Legendre sum is then evaluated and the result can be
expressed formally as

Ay =Ao(si)t S b()PLI+2/G—1)], 29)
=0

where A(s,f,u) represents the scattering amplitude for
the unsubtracted case given by (17). The functions
hi(s), unfortunately, are quite complicated expressions
involving ReB;(s) and integrals over f,(x,s) and f.(%,s)
which combine with the terms of 4¢(s,f,#) to ensure the
convergence of all of the integrals appearing in the final
representation. For example, the real parts of %;(s) are
such that ReA (s,t,1) in (29) is identical to the real part
of the original fixed-s dispersion relation [Eq. (27)].

While the unitary scattering amplitude is more com-
plicated in the subtracted case, it is evident from (29)
that the expressions of Sec. IV for the double spectral
functions are unchanged. It also follows that the
validity of the m-times subtracted fixed-s dispersion
relation implies the singularity structure in the mo-
mentum-transfer variables of the Mandelstam repre-
sentation, at least for s in the elastic region.

VI. SITUATION WITH RESONANCES

In the development of the scattering amplitude in
Sec. III, the restrictive assumption was made that all
partial-wave phase shifts were less than 47 in magni-
tude. The purpose of this section is to relax this re-
striction and to study the role of resonances in the
Mandelstam representation. The restriction arose from
the fact that the partial-wave elastic unitarity con-
dition gives two expansions for Im4,(s) in powers of
Red (s). Both expansions are absolutely convergent but

ARTHUR W. MARTIN
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only one of them converges to the correct value, and the
appropriate choice depends upon the magnitude of the
phase shift.

Two preliminary points must be made. First, all
phase shifts start from zero at threshold so there is
certainly a region in s in which the previous repre-
sentations are valid. Second, the Froissart-Gribov
formula indicates that 4 ;(s) decreases in magnitude as /
increases,? so there is some value of / above which all
partial-wave phase shifts remain less than 7 in magni-
tude throughout the elastic region. We need to consider,
then, the effects of a finite number of partial waves for
which the formula (12) is invalid in certain energy
ranges.

For convenience we denote the expansion

. b %41: — 1) kt1/2
Sl(s)=zr(+) (s—1)

C 2kt
k=0 T (k+2)T(3)skH/2 [Red (s) .

Consider the first partial-wave phase shift that passes
through +41r as the energy increases from threshold.
Let the energy at which this occurs be s;. The phase
shift might then continue to grow in magnitude and pass
through =2, it might decrease back through 4%, or
it might do neither. Let the energy at which one of the
first two possibilities occurs be s,. It then follows from
the elastic unitarity condition that Imd4,(s) for this
partial-wave can be written

ImA ;(s)=S1(s)+6[ (s—s1) (s2—35)]
X{[Ls/(s—1)J"2—25:(s)}. (30)

This expression will be valid up to an energy, s, say,
with s3>ss, at which the phase shift again enters a
region where (8) is the appropriate expansion. At this
point another step-function term would have to be
added to the right-hand side of (30), and so forth.

In the elastic region, then, the formula (12) would be
modified for a finite number of partial-wave amplitudes
by the addition of step-function terms, each involving
different energies s; and s,. The effect of this modi-
fication upon the unitary scattering amplitude is easily
seen. The first term on the right-hand side of (30) is
valid for all partial-wave amplitudes and the Legendre
sum over this term reproduces the absorptive part of the
scattering amplitude of Sec. ITI. The Legendre sum over
the finite number of step-function terms, on the other
hand, contributes “subtractionlike’” terms such as the
sum on the right-hand side of (29). We emphasize that
this finite number of additional terms cannot contribute
to the ¢ and # discontinuities, so the expressions for the
double spectral functions of Sec. IV are unaffected by
the presence of resonances.

We are led to the somewhat unfortunate conclusion
that any description of resonances or, more strongly,
any partial-wave amplitude with |8;| >} in terms of a
unitary Mandelstam representation must involve sub-

9 See, for example, A. W. Martin, Phys. Rev. 173, 1439 (1968).
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tractions. The double spectral functions in a unitary
representation cannot, by themselves, lead to reso-
nances. Furthermore, the single spectral function terms
that will appear in the representation in the form

1 e ds'a,(s")
- —‘)"Pz[l'l-Zt/(S“' nl,

rJ1 (s'—s

where possible subtractions have been suppressed, will
have weight functions o;(s) that include the step func-
tions in (30).

These conclusions indicate that the bootstrap problem
of determining resonances through the combination of
unitarity and crossing symmetry in the framework of a
Mandelstamlike representation becomes more ambigu-
ous. The possibility of anticipated resonances must be
incorporated at the start by including single spectral
function terms for the appropriate partial wave. The
single spectral functions must also anticipate the
energies at which the phase shifts pass through certain
values. Finally, the single spectral function terms for the
crossed channels will contribute to 4.(,s) and A,(x,s)
and thereby to the double spectral functions, thus
affecting the energy dependence of the phase shifts. So
it appears that the bootstrap problem becomes very
complicated in such a framework.

In concluding this section we note that there seems to
be a correlation between these results and the recent
conjectures of Freund? and Harari® concerning the
Pomeranchuk trajectory and finite-energy sum rules.
Briefly, these authors suggest that the absorptive parts
of the amplitudes appearing in the finite-energy sum
rules be separated into two pieces, a piece composed
primarily of resonance contributions and a remainder
piece that can be typified as ‘“background.” The reso-
nance contributions then sum to given all of the ¢-
channel Regge poles except the Pomeranchukon, which
is given by the integral over the background.

In the language of this paper, the background piece
of the low-energy absorptive part can be interpreted as
the contribution of the double spectral functions, which
must be present in all amplitudes, resonances or no, and
which may have something of a universal character.
The resonance contributions, on the other hand, can be
viewed as arising from the single spectral functions,
which necessarily contain the predominant portion of
the resonant absorptive parts. While this separation
appears natural, and may be correct, it is clearly some-
what premature to stress it in the absence of definitive
results on the behavior of the double spectral functions.
It is also necessary to determine the amplitude in the
inelastic region since this region must contribute sub-
stantially to the finite-energy sum rules. This extension
to the inelastic region is treated in Sec. VI.

0P, G. O. Freund, Phys. Rev. Letters 20, 235 (1968).
1t H. Harari, Phys. Rev. Letters 20, 1395 (1968).

UNITARY SCATTERING AMPLITUDES. II

2161

VII. CONTINUATION TO THE
INELASTIC REGION

In the inelastic region we do not have a simple and
concise statement of unitarity, like (1), and we do not
intend here to grapple with the difficult problem of
three- and four-particle intermediate states. Instead we
wish to explore the continuation of the scattering
amplitude using the inverse amplitude parametrization
for the partial waves and the suggestive structure of the
Mandelstam representation. It was noted in Sec. IT (and
is shown in detail in the Appendix) that the inverse
amplitude representation permits a direct continuation
of the expansions (7) and (8), which are consequences of
elastic unitarity, to values of s outside the elastic
region.

We use this fact to suggest that f,(x,s) and f,(x,s)
develop imaginary parts as s enters the inelastic region.
First we note that y;(s) becomes complex at the first
inelastic threshold by writing the partial-wave ampli-
tude as

A(s)=[s/(s—1)J"2R;(s) sinfe?®, 31)

where ; is real and R;(s) is the ratio of the total to the
elastic cross section in the /th partial wave. Equations
(6) and (31) can be solved for ¥;(s) with the result
(suppressing subscripts)

(s—1)"%(s)={R(s) cotf—i[R(s)—1]}*,

and since R(s)>1 if the inelastic partial-wave cross
section is nonvanishing, we conclude that ¢,(s) is
complex.

In continuing (12) out of the elastic region we replace
Red (s) by Ar(s) as defined by (9). Now it is possible
that Ar(s) does not have a simple Froissart-Gribov
representation in the inelastic region, in which case we
cannot evaluate the Legendre sum. In the absence of a
precise statement of inelastic unitarity this question
must remain unanswered. We will assume that (11)
remains valid in the inelastic region for Ag(s) which
leads to the conclusion that f;and f, develop imaginary
parts. The structure of the Mandelstam representation
suggests a simple way to incorporate these effects.

Crossing symmetry implies that each double spectral
function consists of two “wings” that in the present
equal-mass case can be written in the form

Psi(8,) =0(st—4s—1)p1(s,t)+0(st—4t—s)pa(s,t).

For simplicity we are treating here a problem like pion-
pion scattering, where the first inelastic states are the
four-pion states. Since the arguments of this section are
based upon the Mandelstam representation, it is a
simple matter to extend them to the more general
situation. The Mandelstam representation also gives the
formula for the crossed-channel absorptive parts,

1 r2ds’psi(s’yt) 1 = du'pr(ut)
A= [ + ,
wJ1 s'—s wJ1 wts+i—1

(32)

(33)
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where subtractions have been omitted because they
play no role in the argument.

For s and ¢ greater than unity the imaginary part of
4,(1,s) comes from the two wings of p,;, and the second
wing gives an imaginary part only for s in the inelastic
region. This leads us to consider the continuation

ft(x’s) =Reft(x,s)—l-i()(sx-4x—s)p2(s,x) ’

with an analogous expression for f.(x,s). If the sub-
tracted Mandelstam representation is valid, then
Refi(x,s) would be given by the real part of the
subtracted version of (33). But from the point of view
of the unitary scattering amplitude [Egs. (17), (18),
and (19)7, it is unnecessary to make any further as-
sumptions about Ref,(x,s).

We now wish to examine the consequences of (34)
for the singularity structure of the continued scattering
amplitude. It is clear by the method of construction
that A®(s,t,u) [Eq. (18)] contributes to the s-channel
absorptive part in the inelastic region and gives a double
spectral function with the Landau curve of the second
wing in (32). The higher-order terms 4™ (s,f,%), with
n=2, 4, 6, ---, develop real parts and additional
imaginary parts because of the presence of the second-
wing double spectral function in (34). The formulas get
rather complicated and will not be recorded here. There
is however an important observation to be made.

Consider the term 4® (s,t,4) [Eq. (20)] with f, and
fu continued as in (34). In the inelastic region 4® can
be decomposed into imaginary terms involving only
Ref, and Refy, real terms involving these functions and
second-wing functions, and imaginary terms involving
only second-wing functions. The first of these contribute
double spectral functions to the full amplitude with the
Landau curves of the first wings. Second, the real terms
have ¢ and # discontinuities with Landau curves (in the
positive-f case)

t=t,[s/(s—4), 1]=4(s—1)/(s—4),

that is, asymptotic to =4 and s=4. The last set of
terms, which are imaginary and therefore contribute to
the s-channel absorptive parts in the inelastic region,
give rise to double spectral functions with the Landau
curves,

t=1,[s/(s—4), s/ (s—4)J=4s(s—2)"/[(s— 1D (s—4)],

again asymptotic to {=4 and s=4.

This persists to all orders; the introduction of the
second-wing double spectral function in (34) leads to
additional singularities for positive { and #, but the
Landau curves for these singularities are confined to the
region (in the positive-f case) ¢>4, s> 4, and they get
progressively further from the origin in the s-f plane.
As a consequence only 4® (s,t,u) contributes a double
spectral function in the region 1<¢<4, and this is the
region determined, in principle, by elastic unitarity in
the ¢ channel. We conclude that the prescription (34) isa

(34
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natural way to extend the unitary scattering amplitude
into the inelastic region, giving the additional singu-
larities of the Mandelstam representation required by
crossing symmetry.

Finally there is the question of the convergence of
the expansion (17) in the inelastic region. This depends
upon the magnitudes of Ref;, Ref., and the second-
wing double spectral functions, which remain to be
determined by inelastic unitarity and crossing sym-
metry. So at this point, in contrast to the elastic region,
we can say nothing about convergence apart from the
following observation. The expansions (7) and (8) are
absolutely convergent in the elastic region because of
unitarity. Outside the elastic region, they are absolutely
convergent in complex domains described in the Ap-
pendix. Now it is quite possible that a given partial-
wave amplitude will have parameters R;(s) and ; in
(31) such that the expansions diverge, for example,
R;~2 and 6;~=1r.

However, if the Froissart-Gribov formula remains
valid for 4z(s) as we have assumed, then all partial-
wave amplitudes with sufficiently large ! will be within
the domain of convergence. This indicates that the
troublesome partial waves can be handled by the
introduction of a finite number of subtraction terms. In
fact, the discussions of Secs. V and VI carry over
directly to the inelastic region. The number of subtrac-
tion terms is of course an open question.

VIII. CONTINUATION TO THE
CROSSED CHANNELS

We turn to the problem of continuing the unitary
scattering amplitude to the physical regions of the
crossed channels. The ¢ and # dependence of the
representation (17) occurs simply in the denominators
and causes no trouble. The main question is the con-
tinuation of the s dependence below the elastic thresh-
old. We again use the inverse amplitude representation
as a guide and assume that 4 z(s) satisfies the Froissart-
Gribov formula so that the Legendre sums can be
evaluated as before.

The fact that y;(s) is real for 0<s< 1 indicates that
fi(x,5) and fu(x,s) remain real in this range, and like-
wise A®(s,f,u) within the Mandelstam triangle. The
terms A™(s,tu), n=2, 4, 6, ---, have the common
factor i(s—1)"2 which is real for s<1. The functions
I.(s,t; %1," « - %) [Eqs. (13) and (14)] have well-defined
continuations into the Mandelstam triangle and are real
there (they develop logarithmic singularities for nega-
tive values of s). It follows that the representation (17)
can be directly continued into the Mandelstam triangle
where it is real and free of singularities, as we would
insist, provided the continuations of f; and f, are given
these properties.

We note in passing the obvious fact that f; and f,
cannot be identified as the crossed-channel absorptive
parts in the region 0 <s<1, since all of the terms in the
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infinite sum in (17) contribute to the absorptive parts.
At this point there are two rather distinct questions that
must be asked. What is the nature of the singularity
structure as s is continued to negative values, i.e., does
the third double spectral function come in with the
proper Landau curves? And, what are the convergence
properties of the expansion (17) within the Mandelstam
triangle? The first question is complicated by the
necessity of examining the singularity structure of an
infinite number of terms. It is evident that the first
term, A® (s,f,4), can be endowed with the proper third
dsf simply by construction. The higher-order terms have
factors 4/s which give unwanted branch points at s=0,
but they also have logarithmic singularities (coming
from the functions 7,) with branch points at s=0.

It is possible that the infinite set of terms could be
arranged so that these unwanted singularities cancel,
but this consideration is obviated by an unexpected
difficulty arising from the second question, the con-
vergence of the sum. We find that the amplitude as it
stands cannot be continued to s=0 without the addition
of an infinite number of subtraction terms. The basis of
this very negative result is as follows. The expansion of
the amplitude came from the expansion of the partial-
wave amplitudes in powers of 4 z(s) and the assumption
that the Froissart-Gribov formula was valid for 4z(s)
outside the elastic region.

Now, in problems with the appropriate symmetry,
Martin has shown?® that each y;(s) has at least one
pole in the interval 0<s<1, the pole positions ap-
proaching s=0 as / increases. The quantity (s—1)y¢2(s)
for each partial wave then starts from zero at the
elastic threshold and decreases to — as s decreases
toward zero. The analysis of the Appendix shows that
each partial wave passes through a region where the
expansions (7) and (8) fail to converge and eventually
enters a region where (8) is the appropriate expansion.
This indicates that step-function terms must be added
to each partial wave, much as in the resonance situation
of Sec. VI, to guarantee that the sums converge to the
proper values. In contrast to the resonance case, how-
ever, an infinite number of subtraction terms is needed
here.

This is, to be sure, an indirect approach to the ques-
tion of continuing (17) to the crossed channels. But in
the absence of definite results for f,(»,5) and f,(x,s) it
provides evidence that the expansion (17) cannot be
analytically continued as it stands to s=0. Another way
to view the situation is this. The poles of the functions
¥u(s) do not give rise to singularities in the partial-wave
amplitudes on the first sheet of the elastic branch cut.
But they do lead to poles in 4;(s) on the second sheet,’
the pole positions approaching s=0 as I increases, The
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full amplitude therefore has an essential singularity at
s=0 on the second sheet of the elastic cut.

In the construction procedure of Sec. III the square-
root-type elastic branch point is given explicitly by the
factor (s—1)2, common to all terms in the sum in (17).
It follows that the continuation of the amplitude onto
the second sheet differs from that onto the first sheet by
a simple sign change of the sum in (17). Since the
continuation of A(s,tux) to the first (second) sheet is
given by the sum (difference) of two functions, and
since A (s,},#) has an essential singularity on the second
sheet but not on the first, both functions [namely
AW(stu) and the infinite sum in (17)] must have
essential singularities at s=0. This means that f(,s)
and f,(x,s) must themselves have essential singularities
at =0, and it is not surprising that the preceding dis-
cussion indicated the impossibility of the continuation
of (17) to the crossed channels.

The fixed-s dispersion relations and the elastic uni-
tarity condition do not contain enough information to
deal with crossing symmetry. Further assumptions on
the analytic properties in s must be invoked. One way to
avoid these difficulties, for example, would be to assume
the validity of the Mandelstam representation. The
continuation problems then vanish and one has the
added feature that the double spectral functions in the
elastic region of each of the three channels are given by
the expressions of Sec. IV. The determination of the
amplitude becomes a problem of coupled integral equa-
tions that, unfortunately, is not completely defined
without a statement of inelastic unitarity.

IX. CONCLUSIONS

The assumption of the validity of fixed-s dispersion
relations for s in the elastic region together with
rigorous expansions for the partial-wave amplitudes
leads to scattering amplitudes that are manifestly
unitary. Moreover, the unitary scattering amplitudes
have the singularity structure in the momentum-trans-
fer variables of the Mandelstam representation. By
crossing symmetry, this result holds as well in the
elastic regions of the crossed channels. The elastic-
region double spectral functions are expressed as finite
sums involving finite integrals and are determined by
the real parts of the crossed-channel absorptive parts,
thus providing an alternative description of Mandel-
stam’s results.?

It was shown that the presence of subtractions in the
fixed-s dispersion relation can be incorporated into the
unitary amplitude. One method was described formally
in Sec. V. From a practical point of view the simplest
way to generate the expansion of the imaginary part of
the amplitude in the subtracted case is by the use of the
identities (21) and some slight generalizations of those
identities, The resulting expressions are more com-
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plicated than in the unsubtracted case, but the formulas
for the double spectral functions remain unchanged.

The construction procedure also clarifies the relation-
ship of resonances to the Mandelstam representation. It
was shown that the double spectral functions in a
unitary representation cannot give rise to resonant
partial waves and that subtractionlike terms involving
single spectral functions must be present. Finally, the
continuation of the unitary amplitude away from the
elastic region was considered. In the absence of precise
statements of inelastic unitarity, only the singularity
structure of the continued amplitude could be ex-
amined. A simple prescription was found that generates
the additional singularities in the inelastic region dic-
tated by crossing symmetry.

A motivation for the construction of unitary scat-
tering amplitudes is the hope that the twin requirements
of crossing and unitarity will be more easily satisfied in
such a framework. However, as in practically all earlier
attempts, the unitary representation constructed here
finds crossing symmetry a stubborn obstacle. The
amplitude as it stands cannot be continued to the
physical regions of the crossed channels to impose the
crossing conditions. One way out would be to assume the
validity of the Mandelstam representation, but this is a
very strong assumption. A more difficult approach
would endeavor to sum the expansion of the amplitude
[Eq. (17)] with the hope that the necessary continua-
tion properties would then be evident.

APPENDIX

We consider here the expansions of the partial-wave
amplitudes using the inverse amplitude representation
[Eq. (6)]. Throughout the cut s-plane, the partial-wave
amplitude can be written

A(s)=Agr(s)+iA5(s),

where A z(s) and 4;(s) are expressed in terms of ¥ (s) by
(9). We define the variable

&= (S— 1)\1/2(3) )

and consider the expansion of 47(s) in powers of 4z(s)
for arbitrary complex values of z.

(A1)

It is a matter of some algebra to verify the two

identities
Ar=S.[Ar]+[s/(s—1) TR, (2),
Ar=[s/(s—1)]*—S[Ar]—[s/ (s—1) "R (2),
where S;[Ax] is the finite sum
n T(k+3)45(s—1)H2

S.[Az]=
[4=1= 2, T(k+2)T(})sHe

[A R]2k+2 s
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Fic. 1. Locus of points in the complex z plane satisfying
|4z] = (1+2)*].

and the remainder terms are given by

g2 n 2(n—m—+1)(2n+1)!
R, (z)= > gn—m (A2)
A4zt m=  m!(2n—m-+2)!
and 4
» n 2(n—m-+1)(2n+1)!
RO g (n—m+1)(2n+ )z"‘"‘. (A3)

A4zt m=0  m!(2n—m-+2)!

We are interested in the behavior of these quantities in
the limit # —,

In this limit, S.[4z] becomes a hypergeometric
function that converges within and on the unit circle. So
the limit exists only for

|4(s—1)ArY/s| = 45/ (1+2)?| < 1.

The locus of points in the complex z plane satisfying the
equality |4z] = | (142)?| is plotted in Fig. 1. There are
two domains in which S,[4z] converges in the limit,
the small elliptical region (I) containing the segment
[—3+42v2,1] and the region (II) lying outside the
closed curve of the figure. Recalling that in the elastic
energy region,

(A4)

z= (s—1)y2(s)=tan?%,

where § is the phase shift, we see that the two domains
correspond to the regions of validity of (7) and (8),
respectively.

To complete the demonstration, we turn to the limits
of the remainder terms as # —. In region I we have
|2| <1, so in this region the sum in (A2) is bounded in
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absolute value by

n 2(n—m+1)2n+1)!  (2n+1)!
w0 mlQn—m+2)!  nlp+1)

(AS)

It follows that in region I,
T(n+3)|z|
2 (3)r (n+2)

4 n+1

(142)2

| R.®(2)| <

which vanishes in the limit # —c by virtue of (A4).
The argument goes through in similar fashion for R,®
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in region II. In this region, |z|>1, and the sum in
(A3) is again bounded in absolute value by (AS5). So in
region II,

Ptd) | 45 |

L (BT (n+2) 3] | (1+2)

which vanishes in the limit # —c by virtue of (A4).

We conclude that with the replacements Red i(s) —
Ag(s) and ImA;(s)— Ar(s) the expansion (7) con-
verges for complex values of s such that z [Eq. (A1)]
lies in region I and the expansion (8) holds for values of
2 in region IT.

| Ra® (2)| <
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A generalization of the Bjorken limit (for the two-point function) to the three-point and four-point
functions is given. Some general features of the asymptotic behavior of the #-point function are also dis-
cussed. These results show that in calculating the various Ward identities for the #-point function all
currents are ‘“asymptotically conserved.” We derive generalized Weinberg sum rules for the three-point
functions (these results can be generalized to the #-point functions). We show that the Kz%-Ks® mass dif-
ference (in the universal Fermi theory) is quadratically divergent. Making a saturation assumption, we
calculate the coefficient of the quadratic divergency and we get a weak-interaction cutoff A=4 BeV, sug-
gesting that weak interactions are strongly nonlocal. By means of a simple power-counting argument, we
find that the #th order probably behaves like #!G (GA?)», and assuming that this is some kind of asymp-
totic expansion, we find that the series begins to blow up for #~10% The arguments for this do not con-
stitute a proof. We then study the radiative corrections to the decays = — ev and = — uv, which involve
a three-point function. We find that these decays cannot be discussed within the framework of current
algebra. Finally we show that a somewhat generalized version of the Tamm-Dancoff approximation can

be justified if we use our results for the #-point function. i

1. INTRODUCTION

OME time ago Bjorken proposed! a method for
calculating the (virtual) asymptotic behavior of the
two-point function. This method has been very useful
in estimating the radiative corrections to 8 decay!:?
(coming from high virtual masses) as well as the electro-
magnetic mass differences.!'® In this paper we shall
generalize Bjorken’s expansion to the three-point func-
tion as well as the four-point function; it is possible to
obtain general results for the #-point function also.
Such a generalization is required in order to discuss
several interesting physical problems, e.g., the K1%-K ¢°
mass difference (in the current-current interaction).
The main results of this paper are the following:

*Work supported in part by the U. S. Atomic Energy
Commission.
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In Sec. 2 we generalize the Bjorken expansion to the
three-point and the four-point functions. We also give
a method for calculating the #-point function.

In Sec. 3 we show that the results obtained in the
previous section can be used to prove the following
theorem: Assuming the ordinary current algebra, all
currents are “asymptotically conserved” in the sense
that in calculating Ward identities for the #-point
function

oo d4x1. . .d4xneiqlll+""+ iqnTn
XA TG (1)~ - Jun(xa)) | BY,  (1.1)
it is correct to assume that in time-ordered products

rmg, em(x,,)=0 (1.2)
for all ¢’s in so far as we are only interested in the
leading terms of the #-point function. This theorem is
evidently of practical importance since it shows that
asymptotically the Ward identities allow us to express
the #-point function entirely in terms of the (z—1)-



