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A representation for the invariant scattering amplitude A (s,t,u) is constructed that satisfies elastic uni-
tarity in the s channel. The development is based upon the usual Sxed-s dispersion relations and rigorous
expansions of the partial-@rave amplitudes, The amplitude has the singularity structure of the Mandelstam
representation and leads to neve expressions for the double spectral functions in the elastic region. The
relationship of resonances to the Mandelstam representation is clari6ed. The continuation of the unitary
scattering amplitude to the inelastic region and the physical regions of the crossed channels is discussed.

I. INTRODUCTION

N an earlier article' a representation for the invariant
~ . scattering amplitude A(s, t,N) was constructed that
satis6ed elastic unitarity in the s channel. The repre-
sentation had a structure like that of the Mandelstam
representation, ~ yet it diBered in some crucial details
that led to difficulties with crossing symmetry and
inelastic unitarity. The unitary scattering amplitude
was developed by using the X/D method' to construct
unitary partial-wave amplitudes and by using a class of
Legendre sums to sum the Legendre expansion of thc
fuQ amplitude. In the process it was necessary to make
an Ansats for the numerator function in the 1V/D
representation and it was conjectured that the difFi-

culties could be traced to a failure of the Ansats.
Thc purpose of this wol k is to constl uct uilltal y

scattering amplitudes without the necessity of ques-
tionable Ansutsen. The major assumption is the validity
of the fixed-s dispersion relations, or equivalently, the
validity of the Froissart-Gribov formula in the elastic
region. Together with rigorous expansions for the partial-
wave amplitudes that are consequences of elastic
unitarity, this assumption leads to scattering amplitudes
that are manifestly unitary. It is shown that the
singularity structure in the momentum-transfer vari-
ables is precisely that of the Mandelstam representation
for s in the elastic region. Also, the unitary scattering
ampbtude yields new expressions for the elastic-region
double spectral functions. They are expressed as 6nite
sums, for 6nite values of (s,t) or (s,N), and are de-
termined by two real functions in contrast to the
two complex functions of the usual Mandelstam
representation.

It is shown that the construction procedure goes
through for an arbitrary number of subtractions in the
original fixed-s dispersion relation and that the formulas
for the douhle spectral functions are unchanged in the
presence of subtractions. The construction also sheds
light on the relation of resonances to the Mandelstam
representation. It is fourid that the existence of reso-

*Research supported in part by the National Science Foun-
dation.' A, %.Martin, Phys. Rev. 161, 1528 (19N); hereafter referred
to as I.

~ S. Mandelstam, Phys. Rev. 112, 1344 (1958).' Q. F. phew @nd $. M@ndelstam, Phys. Rev. 119, 467 (1960),

nai1ccs requires t11c prcscncc of subtractlonllkc terms in
the representation. That is, the double spectral func-
tions themselves cannot give rise to resonances in the
elastic region. The possible connection of this fact to
recent conjectures on the finite-energy sum rules is
discussed.

The continuation of the unitary scattering amplitude
to the inelastic region and to the physical regions of the
crossed channels requires further assumptions related to
the Froissart-Gribov formula. The inverse amplitude
representation for the partial waves is used to extend
the expansions out of the elastic region. In contrast to
the results of I, a simple prescription is found that
provides for the additional singularities of the Mandel™
stam representation in the inelastic region required by
crossing symmetry. The continuation to the crossed-
channel physical regions is a, different story, however.
DifFicultics apparently related to the existence of
essentia, l singularities on the second sheet prevent the
continuation of the present form of the amplitude to the
crossed channels. Possible methods of surmounting
these difFiculties are outlined.

To simplify kinet, tical problems in the construction
the scattering of distinguishable, spinless particles of
equal mass is considered. This permits a general ap-
proach to questions of crossing relations. The unequal-
mass situation will not give rise to serious complica-
tions, but the extension to spin will be somewhat more
cumbersome. The expansions of the partial-wave ampli-
tudes central to the development are given in Sec. II,
while Sec. III contains the details of the construction
procedure and the resulting unitary scattering ampli-
tude. The elastic-region double spectral functions im-
plied by the representation are determined in Sec. IV.
The situations with subtractions and with resonances
are presented in Secs. V and VI, respectively, and the
questions of the continuation of the representation to
the inela, stic region and the crossed-channel physical
regions are dealt with in Secs. VII and VIII. Section IX
is devoted to conclusions, and some necessary mathe-
matical details are presented in an Appendix.

IL PARTIAL-WAVE AMPLITUDES

The scattering of distinguishable, spinless particles of
equal mass is described by an invaria, nt scattering ampli-
tude A(s, t,N), where s, 3, and I are the usual Mandel-
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p P+ 1)42($1)2+1/2

ImA (s)=P [ReA (s)]'"+', (7)
I'(4+2) I'(-') sImA (s.)= (4~)-I[(s—1)/$]I/2

stam variables satisfying' s+l+ I=1.The amplitude is pressing the angular-momentum subscript for the
normalized so that the elastic unitarity condition in the moment)
s chRIlncl I'cRds

P (P+1)42($1)&+I/2

[ReA (s)]"+'. (8)
I'(0+2)I'(-,')s'+'"

The first of these expansions [Eq. (7)] is valid for

0& s—1 s '" ImA{s) &«-,',A (s,s) =Q(21+1)PI(8)A I(s), [{ )/]
(2) or in terms of the phase shift b,

A i(s) =- ds Pi(s)A (s,s),
2 —1 ——,'Ir+Ns. &«5 «& -', Ir+222r,

where s is the cosine of the center-of-Inass scattering
angle and the integration runs over all angles of the
intermediate meson pair. The partial-wave amplitudes
are related to the scattering amplitude in the usual way,

and by virtue of (1)satisfy the elastic unitarity condition

ImAI{s)=[(s—1)/s]'/ (A i(s) ~'. {3)

Two well-known consequences of (3) are, f'Irst, the
phase shift parametrization

A (s)=[s/(s —1)]'/'smb e" (4)

where b~ is real in the elastic region, and second, the
inverse amplitude representation

A 1($)=s"'[4 i($)—2($—1)'"] ' (3)

where we have adopted the form used by Martin. ' In
(5) the branch cut of the function (s—1)'/' is taken to be
[1, 00) and the function is real on the cut with a non-
negative imaginary part on the first sheet. Similarly, the
flillc'tioII $ / 18 glvcli tlm cllt (—&p, 0] Rnd Is positive
for 0&s.

It is convenient for our purposes to express the in-
verse amplitude representation in terms of the inverse
of eI($)

witll f/($) =/I (s). $/($) 18 Ical R11Rlytlc II1 thc $ plaIic
clit Rlollg (—~ 0] and [s; ~) where sg 18 tllc fii'st
lllclastic threshold. Ill tllc clastic region 'I/i($) 18 real(
related to the phase shift by

&I(s)= (s—1) '" tauri

and an important feature of (6) is that Ai(s) satis6es
elastic unitarity for arbitrary real f/(s).

The present method for constructing unitary scat-
tering amplitudes utilizes the expansion of ImA I {s) in
powers of ReA I(s). Equation (3) provides a quadratic
equation in ImA I(s) and the two roots of this equation
hold for diferent ranges of ImA I(s), or equivalently, for
diferent ranges of the phase shift. The two roots can be
expanded 111 powcls of RcA I($) witll tllc lcslllfs (sup-

4The units h=c=2m=i are used.
A. M@rtlQs NuO+Q ~IIDCIltO 4~2 2~5 ~1.9~~~.

where e is a suitable integer. The second expansion

[Eq. (8)] holds for

—', &«[(s—1)/s]'" ImA (s) &«1

—,'Ir+nir & b & X22r+122r.

We note that the hypergeometric expansions in (7) and

(8) are absolutely convergent within and on the unit
circle) OI' fol

~
ReA (s)

~

«&-'2 [s/(s —1)]'/'

so there is no question of the convergence of the sums in
the elastic region. Instead it is a question of choosing the
appropriate expansion depending upon the magnitude
of thc phase shlf t. This will have important coIlsc-
quences in the construction of unitary scattering
amplitudes,

Finally, in anticipation of questions of inelastic uni-

tarity, we observe that (7) and (8), with suitable
mod16cat1ons~ en]oy R grcRtcl range of valldlty. UslIlg
the inverse amplitude representation [Eq. (6)], we
deGnc

Aa($) ="/V($)[1+(s—1)P($)] '

AI($) =Ls($—1)]'/V($) [1+($—1)P($)] '.
In the elastic region, where f{s) is real, Aa and AI are
simply the real and imaginary parts, respectively, of the
partial-wave amplitude. In the inelastic region Ag and
A~ become complex but the partial-wave amplitude is
still given by

A (s) =A /2(s)+2A I (s) .
The useful aspect of this separation is that the expan-
sions (7) and (8) hold with ReA(s) —+AS(s) and
ImA (s) ~ A I(s) in complex domains discussed in detail
in the Appendix. As a consequence we will be able to
extend the unitary scattering amplitude into the
inelRStiC region in a natural way.
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III. COmSTRUCTIom OZ THE UmITARr
SCATTERING AMPLITUDE

Our purpose in this section is to sum the Legendre
series [Eq. (2)] to obtain a scattering amplitude that
automatically satisfies elastic unitarity. The first re-
quirement is a statement of the l dependence of the
partial-wave amplitudes. This is provided by the
Froissart-Gribov formula:

A, (s)=2[(s—1)x]-' Ct A, (tP) Q, [1 +2t/( s—1)]

+2(—1)'[(s—1)~] ' CuA (us)

XQ([1+2u/(s —1)], (1O)

where A ~ and A„are the absorptive parts in the crossed
channels. The necessary subtractions in (10) have been
suppressed. We will discuss the question of subtractions
later on, and it will be shown that they are readily
incorporated into the Gnal representation.

The Froissart-Gribov formula expresses the l depend-
ence of ReA((s) as weighted integrals over Legendre
functions of the second kind. At the same time, elastic
unitarity provides rapidly convergent expansions [Eqs.
(7) and (8)] for ImA ((s) in powers of ReA ((s). We can
therefore express the unitary partialwave amplitudes in
terms of two unknown real functions (apart from
subtractions) that we introduce as follows:

ReA((s)=2[(s—1)m] ' Ch[f, (xs)

+ (—1)(f.(h,s)] Q,[1+2*/(s—1)]. (11)

In the elastic region we have the identification

f, (x,s) =ReA, (x,s), f„(x,s) =ReA (x,s),

so that with reference to the Mandelstam representation
we would expect f& and f to be given by principal-value
integrals over double spectral functions (dsf) together
%'ith contributions fl om the third dsf. At the first
inelastic threshold, however, it will be useful to have f~

and f develop imaginary parts in keeping with the
discussion of the previous section. In the suggestive
framework of the Mandelstam representation this can
be viewed as applying the principal-part integrations
only to the "first wings" of the spectral functions, while
the "second wings" representing inelastic eBects con-
tribute the imaginary parts.

To simplify the analysis of the construction pro-
cedure, we begin with a restricted class of amplitudes.
We suppose that in the elastic region none of the partial-
wave phase shifts exceed &m in magnitude. It foOows
from the results of the previous section that each
partial-wave amplitude can be written in the unitary

(+(&1.&2) K(h1)h2&4) 5+(&3 fl) K(x. 8&tl)t2)
(14)

X 7

&+(*a &n 2) (t~-—& )K(h~l ~—&)t~—&)

vrhere the latter form holds for e~&2. The functions
introduced in (14) are given by

t (u b) = (s—1) '[a'"(b+s—1)'"ab'(2(u+s —1)'"]'
K(a,b,c)= [c—t+(u, b)]"'[c—t (a)b)]' ' (15)

= [a'+b'+ c'—2ab —2ac—2bc—4abc/(s —1)]'"
and K(u, b,c) is the Mandelstam kernel.

A further detail must be taken care of before we
proceed to write down the unitary scattering amplitude.
It concerns the complications due to the two diferent
crossed channels. We define two sets of functions,
F,&") and. F„&") by
I', ("&(h(, .,x„,s)+ (—1)'F„("&(xg, ,x„,s)

=I f((hl s)+(—1)'f-(» s)]
&&[f,(x2,s)+ (—1) 'f„(x2,s)]
X" X[f (*-,s)+(—1)'f-(*-,s)], (16)

meaning that the terms must be multiplied out and
collected into two groups, one with and the other
without the factor (—1)'. The terms without the factor
will appear with t denominators in the scattering
amplitude; the terms with the factor will appear with N

denominators.
The Legendre sum of the unitary partial-wave ampli-

tudes [Eq. (12)] yields a unitary scattering amplitude
that can be represented as

A (s,t,u) =A("(s,t,u)+ Q A("'(s,t,u),
(even)

whel e
1 "Ch f((x,s) 1 "Ch f (x,s)

A ('& (s,t,u) =— +—,(1&)
g—3 g y S—Q

l (P+1)4~(s 1)a+&(2

A g (s)=ReA ((s)+i Q
I'(0+ 2)F (-', )s'+"'

X[ReA ((s)]'"+', (12)

with ReA ((s) given by (11).The t dependence of (12)
occurs as multiple products of Legendre functions, and
the Legendre sums over such products were evaluated
in I. We define

I (s,t;xg, ,x„)
=2 (s—1)-'P ((21+1)P((1+2t/(s—1))

XQ (1+2*/( -1))X"~

xQ, (1+2h„/(s —1))
and obtain from I,

Ig(s, t; x() = (x&—t)-',
I„(s,t; xg, . ,x.)
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and for e= ~ ~ .,

( )f (y s)+f (ngp)f t(yV
(20)

Ps s- f)jU&(N' —N)It (g~y~

1'2kn —kl'(~11—
2 . dgi ~ ~

) dgn
ni'( —)p(—I+l)L (

p (n)( ~ ~ gn s)

2 2

S f ~ gi . ' ' gn

,«f thc amph«dc tafirst, tci'1n in th

QO

g(2) (s,j,N) =—
Ls(s—l)7g+{x,g)

~ ~ (e co

~ nt'c region 1S SlIQP y„f th. tA(, ,f,.) .b,,pt...p.,t,.t

c0

It is n«di@cult a
~ 9 tis6es thc cia't'c

~ g(n) (s t,N),
unitarity con

s ()f the i(lentity1 This 18 done by IQCRDS

'
en b (19), and the dougk)Im(s)4( j gk+1) ' ' ' pk+m)

dentltles

P (k+wa) P (k)P (nt)+P P

1c +tie dc6nltlon (16).hich follow from e%' 1C

The unitary scatt
'

gCI'1D RIQp ltu C C

this aper. ere1St CCC t Pa rsuto pteoh f llowlng points to
tral functions inf the double spectratlon o
scntatlonq ll c1' d by the reprelIQP 1C

f rmula, (iii) the lifting o t e r
' ' —1r

(')h o mMandelstam representation, )v
' t e

the inelastic region, anamplitude Into
tlDGRtlon of thc RIIlplltudc to c 0

d the imp icl ossc d 1chRnnels RDd i ssln
symmetry. These poin s
sections.

IV. ELASTIC-REGIO N DOUBLE
SPECTRAL FUNCTIONS

1' d developed aboveTile unitary scRtt gCI'ln RIQp ltu C
n

of the Mandelstam re
dc"

llas thc structure 0
thc clRstlc regions R c"so lt, ls s r'R

d hie spectral functions.terlnine the ou e

6 See, for example, e .efn

(4)r)-' dQ Ik(s, tr„, gi,

(21)= 2 (s— kgb1) 'I (s t; gi, ~,gk+„), 2

n

d ldeDtltlcs Obtained by I'cplRclng
the tnplct of ariables (ts,f;,1 in

Legendre polynomials. ' It is a so e
n ~

1

ble spectraltli A( )(s~f~N) glv
(. ( )

theDultlcs coIQc only froIQThese dlscoDtlDultlcs coIQ

fuDCtlODS I ln 19 an i
e~&2

J (s,I; gi, ,g )
= (2') 'P (s-, t+ie; gi, , g„

-I-(, I- ', *,",')3

).~(s,()= Z p.~(")(V),

(even)
with

22n-kp() I &)" '" -='(-:).(-:.+l)~ (.-l)j-—

(23)

dXy, ' ' ', mrs

S $ g Sg''' gnP)I)

(23) and (24) by replacing) 18 obtained floni aRnd pg@ $~N

E gk, )"i,tk)E(gi,gk, ti) (,(., (,)+{&l &2)

«. &Et-~+(g-,~. k)j
E(g„k,),'„k,t k)X(g, ),'k, )')g+(@~ y, gran 3 +e—1) n—8y A

d b i5).s lD thc lntcgrals Rl c dc6ncllelc Ql.c quRIltltlcs lD c ln cel
As the simplest case wwe have

Ik s,t; g,y) =ep t+ (g,y)jI '(g,y—,t . -
nctions can then be written asThe double spectral functions can

1D6nlte SulrlS:
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t&'& (s)—16s(s+1)'/(s —1)',
t&'& s =4s 3s 1's 3' s—1 ',() ( +)(+)/( )

and thc asymptotic lixnlts of thc curves Mc
d*dyLf (*,s)f (y,s)+f-(*,s)f-(y, s)j

Cs(s—1)j'"&(*,y, t) (s) ~ 4~ I/(s 1)a I

t'"& (s) —+ I'.XHLt —t+(x,y)j. (25)

each t by N. In particular, the 6rst term in the expansion are computed to be
of the double spectral function takes the form

(26)

The reader will recall from experience with the Mandel-
stalll Icpl'csclltatioil that tllc llltcgl'al 111 (25) ls a finite
integral for finite values of t; the step function cuts off
the integral for suf6ciehtly large values of x or y.
Similarly, all of the integrals in (22) and (24) are finite,
for 6g.itc f, because of the step functions.

It is of interest to compare (25) with the expression
for the double spectral function obtained by Mandel-
stam. ' Mandelstam's result for the complete double
spectral function in the elastic region is obtained by
making the replacement

Lfi(*,s)f i(y,s)+f.(~,s)f.(y,s)j
-+ LA,*(x,s)A, (y,s)+A „*(x,s)A „(y,s)$

in (25). Since f;(ss,s)= RCA, (s(:,s), i= (t,u) in the elastic
region, this comparison indicates two features of the
expansion (23). First, the higher terms in the expansion
of p, t, correspond to expansions of ImA& and ImA in
powers of RCA & and Red „because the explicit contribu-
tions of the real parts are completely contained in p, &(').

Identical comments apply of course to p,„(s,u).
Second. , because the real parts of the crossed-channel

absorptive parts are known to determine completely the
double spectral function in a domain bordering the
leading Landau curve, the higher-order terms in the
expansion (23) must have Landau curves further from
the origin in the s-t plane. This is easily veri6ed by
direct calculation. Ke denote the domain where p, &&"& is
nonvanishing by

t~& t&"'(s) .

The leading Landau curve, t= t&'&(s), is determined by
the step function in (25) to be

t(s)(s) =mint+(x, y), 1&~x, y(oo.

It follows that for any point in the s-I, plane that the
sum (23) is a finite sum, and the number of terms in the
sum, by (26), is roughly ,'Qt-

The unitary scattering amplitude constructed in Sec.
III yields double spectral functions in the elastic region
that are determined by two real functions in contrast to
the two complex functions of the conventional Mandel-
starn representation. It will be shown in the following
sections that these expressions for the double spectral
functions are unchanged by the presence of subtraction
terms io the Froissart-Gribov formula or by the exist-
ance of resonances in the partial-wave amplitudes.

V. SITUATION WITH SUBTRACTIONS

The results obtained so far have been based upon the
Froissart-Gribov formula LEqs. (10) and (11)j written
without subtractions for any of the partial-wave ampli-
tudes. This is equivalent to assuming that the 6xed-s
dispersion relation holds without subtractions. It is
known from the work of Jin and Martin' that two
subtractions are suf6cient for s in the unphysical region
0~&s~&i, and the optical theorem suggests that two
subtractions are necessary in this region as well. For s in
the elastic region, it is very plausible that a 6nitc
number (and probably a small number) of subtractions
su8Ilce. Even in the case of inde6nitely rising Regge
trajectories, ' with absorptive parts A, (t,s) t &'&, the
DuIQbcl of subtlactlons required ls cxpcctcd to increase
at most linearly with s. We will assume that there is a
6nitc range for s, including the elastic region, in which a
finite number of subtractions in the fixed-s dispersion.
relation is sufhcient.

This assumption permits us to write the 6xed-s dis-
persion relation (for s in the specified range) in the form

Since the function t+(x,y) is monotonic in its two
variables (Eq. (15)), we obtain the familiar result

(t—t,)"
A (s,t,u) =G(s, t,u)+

dt'A ,(t',s)

(t'-to) (t'-t)
t&'& (s)= ti(1,1)=4s/(s —1).

The Landau curves for the higher-order terms are
found from (22) and (24) to satisfy the recurrence
relation

t(++I) (s) t Lt(n) (s) 1$

which in turn leads to the inequality t&"+'&(s)& t&"&(s).

The first few expressions for the higher Landau curves

(u —uo)" " (tu'A „(u',s)
(27)

(u' —uo)"(u' —u)

where G(s, t,u) consists of polynomials in t and u of order
(ec—1) with coeKcients that are, in general, complex
functions of s. The simple observation that we wish to

~ Y. S. Jin and A. Martin, Phys. Rev. 135, BI375 (1964).
s 3ee, for example S. MandeIstam Phys. Rey. (66 j.539 (j.968).
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make is that the presence of the subtraction terms
modifies the Froissart-Gribov formula for /&m only by
an additional function of s,

&I(s)=al(s)+2[(s—1)~j-' d~ W, (», s)

Xa [1+2~/( -1)j+2(-1)'[(-1) j-'

dg A„{m,s)QI[1+2N/(s —1)j. (28)

81(s) contains Ilot ollly thc pRI'tlRI-wave pro/ection of
G(s,t,u) but also terms involving integrals over the
Rbsolptlvc pal'ts (but wltllollt Lcgcndrc fllllctlolls).
These integrals have the property of cancelling the
divergences of the explicit integrals in (28) so that A I (s)
is finite, as it must be; for l&~ m, 81(s)=0.

Since the partial-wave amplitudes must be unitary,
thc construction ploccduIc for thc unitary scRttcring
amplitude goes through Rs ln Scc. III. ODc expands

Impel(s)

using (7) or (8), depending upon the magni-
tude of the phase shift (this point is discussed in Sec.
VI), in powers of Real(s) as given by (28). The
Legendre sum is then evaluated and the result can be
expressed formally as

A (s,t,g) =do(s, t,g)+ Q hl(s)21[1+21/(s —1)j, (29)

where Ao(s, t,g) represents the scattering amplitude for
the unsubtracted case given by {1'l). The functions

hl(s), unfortunately, are quite complicated expressions
involving RCBI(s) and integrals over f,(x,s) and f„(z,s)
which combine with the terms of Ao(s, t,g) to ensure the
convergence of all of the integrals appearing in the 6nal
representation. For example, the real parts of hl(s) are
such that RCA (s,t,g) in (29) is identical to the real part
of the original 6xed-s dispersion relation [Eq. (27)j.

%hile the unitary scattering amplitude is more com-
plicated in the subtracted case, it is evident from (29)
that the expressions of Sec. IV for the double spectral
functions are unchanged. It also follows that the
vRlldlty of thc tÃ-times subtl acted 6xed-s dlspcrslon
relation implies the singularity structure in the mo-
mentum-transfer variables of the Mandelstam repre-
sentation, at least. for s in the elastic region.

VI. SITUATION WITH RESONANCES

In the development of the scattering amplitude in
Scc. III thc rcstI'lctlvc RssunlptloIl wRs made that Rll

partial-wave phase shifts mere less than ~&m in magni-
tude. Thc pUlposc of this scctloD ls to lclax this I'c-

stI'lctloD Rnd to study thc I'olc of resonances lIl thc
Mandelstam representation. The restriction arose from
the fact that the partial-wave elastic unitarity con-
dition gives two expansions for ImAI(s) in powers of
Rcd I (s). Both expansions are absolutely convergent but

only one of them converges to the correct value, and the
appropriate choice depends upon the magnitude of the
phase shift.

Two preliminary points must be made. First, all

phase shifts start from zero at threshold so there is
certainly a region in s in which the previous repre-
sentations are valid. Second, the Froissart-Gribov
formula indicates that 2 I (s) decreases in magnitude ask
1QcIcRscs, ' so thcl.c 18 some value of 3 a.bove which Rll

partial-wave phase shifts remain less than 4x in magni-
tude throughout the elastic region. Ke need to consider,
then, the effects of a 6nite number of partial waves for
which the formula (12) is invalid in certain energy
ranges.

For convenience we denote the expansion

Consider the 6rst partial-wave phase shift that passes
through ~4'z as the energy increases from threshold.
Let thc energy at which this occurs be s~. The phase
shift might then continue to grow in magnitude and pass
through ~43m, it might decrease back through &4'm, or
it might do neither. Let the energy at which one of the
erst t%'o posslbllltlcs occUI'8 bc $2. It then follows frolTl

the elastic unitarity condition that ImAI(s) for this
pal tlal-%'Rvc caIl bc %'I'lttcQ

ImA 1(s) = SI(s)+8[(s—sl) (s2—s)J
&&([/(-1)3'"-» ()}. (30)

This expression will be valid up to RQ energy, s3, say,
with s~&s2, at which the phase shift again enters R

region where (8) is the appropriate expansion. At this
point another step-function term would have to bc
added to the right-hand side of (30), and so forth.

In the elastic region, then, the formula (12) would be
modi6ed for a fjnjtc Dumber of partjal-wave Rmp]itudcs

by the addition of step-function terms, each involving
different energies s1 and s2. The CGcct of this modi-
fication upon the unitary scattering amplitude is easily
seen. The 6rst term on the right-hand side of (30) is
valid for all partial-wave amplitudes and the Lcgendrc
sum over this term reproduces the absorptive part of the
scattering amplitude of Sec. III.The Legendre sum over
the 6nite number of step-function terms, on the other
hand, contributes "subtractionlike" terms such as the
sum on the right-hand side of (29). We emphasize that
this 6nitc Dumber of RdditloQRl tcI'Dls cRDDot contI'lbutc
to the t and N discontinuities, so the expressions for the
double spectral functions of Sec. IV are una6'ected by
the presence of resonances.

%C are led to the somewhat unfortunate conclusion
that Rny description of resonances or, more strongly,
any partial-wave amplitude with

~
bl

~
)4s. in terms of a

unitary Mandelstam representation must involve sub-

9 See, for example, A. %. Martin, Phys. Rev. 173, 1439 (1968).
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tractions. The double spectral functions in a unitary
representation cannot, by themselves, lead to reso-
nances. Furthermore, the single spectral function terms
that will appear in the representation in the form

1 "ds'0 i(s')
P,[1+2t/(s —1)),

S —S

where possible subtractions have been suppressed, will
have weight functions D.i(s) that include the step func-
tions in (30).

These conclusions indicate that the bootstrap problem
of determining resonances through the combination of
unitarity and crossing symmetry in the framework of a
Mandelstamlike representation becomes more ambigu-
ous. The possibility of anticipated resonances must be
incorporated at the start by including single spectral
function terms for the appropriate partial wave. The
single spectral functions must also anticipate the
energies at which the phase shifts pass through certain
values. Finally, the single spectral function terms for the
crossed channels will contribute to A &(t,s) and A„(g,s)
and thereby to the double spectral functions, thus
affecting the energy dependence of the phase shifts. So
it appears that the bootstrap problem becomes very
complicated in such a framework.

In concluding this section we note that there seems to
be a correlation between these results and the recent
conjectures of Freund" and Harari" concerning the
Pomeranchuk trajectory and 6nite-energy sum rules.
BrieQy, these authors suggest that the absorptive parts
of the amplitudes appearing in the finite-energy sum
rules be separated into two pieces, a piece composed
primarily of resonance contributions and a remainder
piece that can be typified as "background. " The reso-
nance contributions then sum to given all of the /-

channel Regge poles except the Pomeranchukon, which
is given by the integral over the background.

In the language of this paper, the background piece
of the low-energy absorptive part can be interpreted as
the contribution of the double spectral functions, which
must be present in all amplitudes, resonances or no, and
which may have something of a universal character.
The resonance contributions, on the other hand, can be
viewed as arising from the single spectral functions,
which necessarily contain the predominant portion of
the resonant absorptive parts. While this separation
appears natural, and may be correct, it is clearly some-
what premature to stress it in the absence of de6nitive
results on the behavior of the double spectral functions.
It is also necessary to determine the amplitude in the
inelastic region since this region must contribute sub-
stantially to the 6nite-energy sum rules. This extension
to the inelastic region is treated in Sec. VI.

' P, G. 0. Freund, Phys. Rev. Letters 20, 235 (1968)."H. Harari, Phys. Rev. Letters 20, 1395 (1968).

VII. CONTINUATION TO THE
INELASTIC REGION

In the inelastic region we do not have a simple and
concise statement of unitarity, like (1), and we do not
intend here to grapple with the diKcult problem of
three- and four-particle intermediate states. Instead we
wish to explore the continuation of the scattering
amplitude using the inverse amplitude parametrization
for the partial waves and the suggestive structure of the
Mandelstam representation. It was noted in Sec. II (and
is shown in detail in the Appendix) that the inverse
amplitude representation permits a direct continuation
of the expansions (7) and (8), which are consequences of
elastic unitarity, to values of s outside the elastic
region.

We use this fact to suggest that f, (x,s) and f„(x,s)
develop imaginary parts as s enters the inelastic region.
First we note that Pi(s) becomes complex at the first
inelastic threshold by writing the partial-wave ampli-
tude as

Ai(s)=[s/(s —1)g'imRi '(s) sin8ie@' (31)

where 8i is real and Ri(s) is the ratio of the total to the
elastic cross section in the 1th partial wave. Equations
(6) and (31) can be solved for fi(s) with the result
(suppressing subscripts)

(s—1)"'P(s)= (R(s) cot8—i[R(s)—1)} ',
and since R(s))1 if the inelastic partial-wave cross
section is nonvanishing, we conclude that fi(s) is
complex.

In continuing (12) out of the elastic region we replace
ReA &(s) by Az(s) as defined by (9). Now it is possible
that As(s) does not have a simple Froissart-Gribov
representation in the inelastic region, in which case we
cannot evaluate the Legendre sum. In the absence of a
precise statement of inelastic unitarity this question
must remain unanswered. We will assume that (11)
remains valid in the inelastic region for As(s) which
leads to the conclusion that f, and f„develop imaginary
parts. The structure of the Mandelstam representation
suggests a simple way to incorporate these eGects.

Crossing symmetry implies that each double spectral
function consists of two "wings" that in the present
equal-mass case can be written in the form

p, &(s,t) =8(st—4s—t)pi(s, t)+8(st —4t—s)p~(s, t) . (32)

For simplicity we are treating here a problem like pion-
pion scattering, where the 6rst inelastic states are the
four-pion states. Since the arguments of this section are
based upon the Mandelstam representation, it is a
simple matter to extend them to the more general
situation. The Mandelstam representation also gives the
formula for the crossed-channel absorptive parts,

1 "ds'p„(s', t) 1 " dg'p i„(N', t)
A, (t,s) =— +—,(33)

'E i $ $ s' i N +$+3 1—



where subtractions Ilavc been omitted because they
play no role in the argument.

FGI' s Rnd E greater thRQ unity thc lmagmary pRlt of
A, (t,s) comes from the two wings of p„, and the second
wing gives an imaginary part only for s in the inelastic
region. This leads us to consider the continuation

f, (x,s) =Ref, (x,s)+N(sx 4x —$)p—(Is,x), (34)

with an analogous expression for f (x,s). If the sub-
tracted Mandelstam representation is valid, theo.
Ref&(x,s) would be given by the real part of the
subtracted version of (33). But from the point of view
of the unitary scattering amplitud~ LEqs (17), (18),
and (19)), it is unnecessary to make any further as-
sumptions about Ref&(x,s).

We now wish to examine the consequences of (34)
for the singularity structure of the continued scattering
amplitude. It is clear by the method of construction
that An&(s, f,g) $Eq. (18)) contributes to the s-channel
absorptive part in the inelastic region and gives a double
spectral fuDctloQ with thc Landau curve of thc second
WIIlg 111 (32). Tllc higher-Order tcl'Ills A I"I(s,f,g)~ wltll
s=2 4 6 - ~ develop real pRrts Rnd additional
imaginary parts because of the presence of the second-
wing double spectral function in (34). The formulas get
rather complicated and will not be recorded here. There
is however an important observation to be made.

Consider the term AII&(s, l,g) LEq. (20)) with f, and
f„continued as in (34). In the inelastic region A& & can
be decomposed into imaginary terms 1Dvolvlng GQlv

Ref I and Ref, real terms involving these functions and
second-wing functions& Rnd imaginary tcI'Ins lnvolvlng
only second-wing functions. The first of these contribute
double spectral functions to the full amplitude with the
Landau curves of the 6rst wings. Second, the real terms
have t and I discontinuities with Landau curves (in the
posltlvc4 case)

that ls, asymptotic to 5=4 RQd $=4. Thc last sct of
terms, which are imaginary and therefore contribute to
the s-channel absorptive parts in the inelastic region,
gjvc risc to double spectral functions wjth the Landau
curves

q

f= t+Ps/(s 4), s/(s —4))=4s(s—2—)'/L(s —1)(s—4)'),

RgR1D RsylTlptotlc to 1=4 Rnd $=4.
This persists to all orders; the introduction of the

second-wing double spectral function in (34) leads to
additional singularities for positive f and I, but the
Landau curves for these singularities are confined to the
lcgloll (lll thc posltlve4 case) f+~ 4, s~~ 4, and tllcy gct
progressively further from the origin in the s-t plane.
As a consequence only A&'I(s, t,g) contributes a double
spcctlal fuQctlGQ ln thc x'cglon I ~~1~~4~ Rnd this ls thc
x'cglon determined) ln prlnclplcq by clastic unltRI'lty ln
the t channel. We conclude that the prescription (34) is a

natural way to extend the unitary scattering amplitude
into the inelastic region, giving the additional singu-
lRlltlcs of tllc Mandelstam lcpI'cscntatloQ required by
crossing symmetry.

Finally there is the question of the convergence of
the expansion (17) in the inelastic region. This depends
upon the magnitudes of Ref„Ref„, and the second-

wing double spectral functions, which remain to be
determined by inelastic unitarity and crossing sym-
Inctly. So Rt this point~ ln contlRst to the clRstlc region~

we CRQ sRy Dothlng Rbout convergence Rpalt from thc
following observation. The expansions (7) and (8) are
absolutely convergent in the elastic region because of
unitarity. Outside the elastic region, they are absolutely
convergent in complex domains described in the Ap-
pcn{Ilx. Now lt ls quite posslblc that R glvcn partlal-
wave amplitude will have parameters RI(s) and 81 in

(31) such that the expansions diverge, for example,
E1,~2 Rn{I 8g~+zx'.

However, if the Froissart-Gribov formula remains
valid for As(s) as we have assumed, then all partial-
wave amplitudes with suKciently large / will be within
the domain of convergence. This indicates that the
troublesome partial waves can be handled by the
introduction of R Rnite number of subtraction terms. In
fact, the discussions of Secs. V and VI carry over
dlI'ectly to thc 1QclRstlc x'cgloQ. Thc QUIDbcI" of subtlac-
tloD terms ls Gf couI'sc Rn open qUcstlon.

Ke turn to the problem of continuing the unitary
scattering amplitude to thc physlcRl rcgloQs Gf thc
crossed channels. The t and I dependence of the
I'cplcsclltatloll (17) occuls simply 111 tllc denominators
and causes no trouble. The main question is thc con-
tinuation of the s dependence below the elastic thresh-
old. %C again use the inverse amplitude representation
as a guide and assume that AS(s) satis6es the Froissart-
Gribov forInula so that the Legendre sums can be
cvRluRtcd Rs bcfolc.

The fact that QI($) is real for ops~& 1 indicates that
fg($,$) alld f ($,$) lclllalll I'cRl II1 tllls IRIlgc, alld Ilkc-

wise AOI(s, t,II) within the Mandelstam triangle. The
terms A '(&t s)Ne=2 4 6 ~ have the common
factor i($ 1)'~2 wh—ich is real for s&1. The functions
I (s,t; xl, ,x ) LEqs. (13)and (14))have well-dehned

c t u tio s' t thcM deltamt' gl and l
there (they develop logarithmic singularities for nega-
tive values of s). It follows that the representation (17)
cRD bc dlx'ectly continued 1Dto thc Mandclstam triRnglc
where it is real and free of singularities, as we would

insist, provided the continuations of f, and f„are given
these px'opcrtlcs.

We note in passing the obvious fact that fI and f
cannot be identifie as the crossed-channel absorptive
pRI'ts ln thc lcglGD 0 4$% j., since Rll of thc tcxIDs ln thc
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infinite sum in (17) contribute to the absorptive parts.
At this point there are two rather distinct questions that
must bc asked. VAlat 18 thc Qatulc of the singularity
structure as s is continued to negative values, i.e, , does
the third double spectral function come in with the
proper Landau curves' And, what are the convergence
properties of the expansion (17) within the Mandelstam
triangles The 6rst question is complicated by the
neccss1ty of cxamlniQg thc singularity structure of an
infinite number of terms. It is evident that the first
term, 2&'&(s,t,N), can be endowed with the proper third
dsf simply by construction. The higher-order terms have
factors gs which give unwanted branch points at s=O,
but they also have logarithmic singularities (coming
fl'oiii the fllllctioiis I„)with bl'aiich polllts at 5=0.

It is possible that the in6nite set of terms could be
arranged so that these unwanted singu1arities cancel,
but this consideration is obviated by an unexpected

difhculty arising from the second question, the con-
vergence of the sum. We 6nd that the amplitude as it
stands cannot be continued to s= 0 without the addition
of an infinite number of subtraction terms. The basis of
this very negative result is as follows. The expansion of
the amplitude came from the expansion of the partial-
wave amplitudes in powers of A s (s) and the assumption.
that the Froissart-Gribov formula was vahd for Az(&)
outside the elastic region.

'

Now, in problems with the a,ppropriate symmetry,
Martin has shown' that each f~(s) has at least one
pole in the interval ops&1, the pole positions ap-
proaching s=0 as / increases. The quantity (s—1)fP (s)
for each partial wave then starts from zero at the
elastic threshold and decreases to —~ as s decreases
toward zero. The analysis of the Appendix shows that
each partial wave passes through a region where the
expansions (7) and (8) fail to converge and eventually
enters a region where (8) is the appropriate expansion.
This indicates that step-function terms must be added
to each partial wave, much as in the resonance situation
of Sec. VI, to guarantee that the sums converge to the
proper values. In contrast to the resonance case, how-
ever, an infinite number of subtraction terms is needed
herc.

This is, to be sure, an indirect approach to the ques-
tion of continuing (17) to the crossed channels. But in
the absence of definite results for f&(x,s) and f„(x,s) it
provides evidence that the expansion (17) cannot be
analytically continued as it stands to s= 0. Another way
to view the situation is this. The poles of the functions
Pi(s) do not give rise to singularities in the partial-wave
amplitudes on the first sheet of the elastic branch cut.
But they do lead to poles in A &(s) on the second sheet, '
the pole positions approaching s= 0 as / increases, The

fuH amplitude therefore has an essential singularity at
s=o on the second sheet of the elastic cut.

In the construction procedure of Sec. III the square-

root-type elastic branch point is given explicitly by the
factor (s—1)'i' common to all terms in the sum in (17).
It follows that the continuation of the amplitude onto
the second sheet di6ers from that onto the first sheet by
a simple sign change of the sum in (17). Since the
continuation of A(s, t,l) to the first (second) sheet is
given by the sum (difference) of two functions, and
since A (s,t,N) has an essential singularity on the second
sheet but not on the 6rst, both functions Lnameiy

A+(s, t,N) and the infinite sum in (17)$ must have
essential singularities at s=O. This means that f~(x,s)
and f„(x,s) must themselves have essential singularities
at s=o, and it is not surprising that the preceding dis-

cussioQ indicated the impossibility of the continuation
of (17) to the crossed channels.

The fixed-s dispersion relations and the elastic uni-

tarity condition do not contain enough information to
deal with crossing symmetry. Further assumptions on
the analytic properties in s must be invoked. One way to
avoid these difhculties, for example, would be to assume
the validity of the Mandelstam representation. The
continua, tion problems then vanish and one has the
added feature that the double spectral functions in the
elastic region of each of the three channels are given by
thc cxplessions of Scc. IV. Tllc determination of thc
amplitude becomes a problem of coupled integral equa-
tions that, unfortunately, is not completely defined
without a statement of inelastic unitarity.

IX. CONCLUSIONS

The assumption of the validity of Axed-s dispersion

relations for s in the elastic region together with

rigorous expansions for the partial-wave amplitudes
leads to scattering amplitudes that are manifestly

unitary. Moreover, the unitary scattering amplitudes
have the singularity structure in the momentum-trans-

fer variables of the Mandelstam representation. Sy
crossing symmetry, this result holds as well in the
elastic regions of the crossed channels. The elastic-

region double spectral functions are expressed as finite
sums involving finite integrals and are determined by
the real parts of the crossed-channel absorptive parts,
thus providing an alternative description of Mandel-
stam's results. ~

It was shown that the presence of subtractions in the
fixed-s dispersion relation can be incorporated into the
unitary amplitude. One method was described formally
in Sec. V. From a practical point of view thc simp est
way to generate the expansion of the imaginary part of
the amplitude in the subtracted case is by the use of the
identities (21) and some slight generalizations of those
identities, The resulting expressions are more com-
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plicated than in the unsubtxactcd case, but the formulas
for the double spectral functions remain unchanged.

The coIlstruction procedure also daMes the relation-

ship of resonances to the Mandelstam representation. It
was shown that thc double spectrRl functions in a
unitary I'cpx'cscDtatlon CRDQot give risc to resonant
partial waves and that subtractionbkc terms involving

single spectI'al functions must be present. FinRHy, the
continuation of the unitary amplitude away from the
clastic region was considered. In the absence of precise
statcDMDts of lnelastlc unltarlty~ only the slngularlty
structure of the continued amplitude could be ex-

amined. A simple prescription was found that generates
the additional singularities in the inelastic region dic-

tated by croSSing syIQIDetry.

A Inotivation for the construction of unitary scat-
tering amplitudes is the hope that the twin requirements

of crossing and unitarity will be Inore easjtly satis6ed in

such a franMwork. However, as in practically Rll earlier

attempts, the unitary representation constructed here

6nds crossing symmetry a stubborn obstacle. The
Rmphtude Rs lt stRQds CRQnot bc coQtlQued to the

physical regions of the crossed channels to impose the
CI"osslng condltlons. ODc wRy out would bc to assume thc

vahdity of the Mandelstam representation, but this is a
vcx'y stI'ong RssuIDption. A Inore di85cult approach

would endeavor to sum the expansion of the arnpbtude

LEq. (17)j with the hope that the necessary continua-

tion properties would then be evident.

s= (s—1)P(s), (A1)

and consider the expansion of Ar(s) in powers of As(s)
for axbitrary complex values of a

It 18 R matter of some RlgcbI'R to vcI'lfy thc two
ldcntltlcs

%c consider hcx'c the cxpRDslons of thc partlRI-wRvc

amplitudes using the inverse amplitude representation

LEq. (6)j.Throughout the cut s-plane, the partial-wave

RIBplltude can bc written

A(s) =As(s)+iAr(s),

where As (s) and AI (s) are expressed in terms of f(s) by
(9). We de6ne the variable

Fxo. 1. Locus of points in the complex r, plane satisfying
l4 I

=
I (~+~)'I.

s"+' ~ 2(e—mr+1) (2e+1)!
g (n (s)—,Q . se—ta (A2)

{Iys)'"+' ~~ m!(2e—m+2)!
Rnd

s" ~ 2(N —m+1)(2N+1)!
E„»(s)= sm—n (A3)

(1+s)'"+' ~=0 m!(2e—m+2)!

%c Rrc lntclcstcd 1Q thc bchavloI' of thcsc quRDtltlcs lD

the llIMt I~.
In this limit, S fAsl becomes a hypergeometric

function that convcrges within Rnd on the unit circle. So
the bmit exists only for

The locus of points in the coxnplex s plane satisfying the
equality ) 4s] =

j (1+s)'( is plotted in Fig. 1. There are

two domains in which S„LAsj converges in the limit,
the small elliptical region (I) containing the segment

L—3+2&2, 1j and the region (II) lying outside the
dosed curve of the 6gure. Recalbng that in the elastic

energy region,

s= (s—1)P(s)= tan'8,

where S„gdsj is the 6nite sum

P(P+x)4k(g 1)ih+1/2

S„LAsj= Q - — I As|"+',
s~ I'(0+2)I'(-', )s"+'"

whcx'c 8 ls thc phRsc shift, wc scc thRt thc two domains

correspond to the regions of validity of (7) and (g),
1cspcctlvcly,

To coIQplctc thc demonstration, wc turn to thc limits

of thc rcIAalnder tcrIQs Rs fl ~. In rcglon I wc have

(s
~

&~ 1, so in this region the sum in (A2) is bounded in
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absolute value by

2 (n —nt+1) (2n+1)! (2n+1)!

nt! (2n n—t+2)! n!(n+1)!

It follows that in region I,

I (+-:)
I&-"'(s) I

&
2I'(-', )I'(n+2) I sI (1+s)'

in region II. In this region, IsI &~1, and the sum in

(A3) is again bounded in absolute value by (AS). So in
region II,

AS
4g n+1

r(n+-;) I.I
4s .+

I
~.'" (s) I

~&

21'(—', )I'(n+2) (1+s)'

which vanishes in the limit, n ~oo by virtue of (A4).
The argument goes through in similar fashion for E„(2&

which vanishes in the limit n —+oo by virtue of (A4).
We conclude ths, t with the replacements ReA t(s) ~

aft'(s) and InL4t(s) ~dr(s) the expansion (7) con-
verges for complex values of s such that s LEq. (Al)j
lies in region I and the expansion (8) holds for values of
s in region II.
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A generalization of the Bjorken limit {for the two-point function) to the three-point and four-point
functions is given. Some general features of the asymptotic behavior of the n-point function are also dis-
cussed. These results show that in calculating the various Ward identities for the n-point function all
currents are "asymptotically conserved. " We derive generalized Weinberg sum rules for the three-point
functions (these results can be generalized to the n-point functions). We show that the ICI, -Eg mass dif-
ference (in the universal Fermi theory) is quadratically divergent. Making a saturation assumption, we
calculate the coe%cient of the quadratic divergency and we get a weak-interaction cutoR h.=4 BeV, sug-
gesting that weak interactions are strongly nonlocal. By means of a simple power-counting argument, we
find that the nth order probably behaves like elG(GA. ')" ', and assuming that this is some kind of asymp-
totic expansion, we find that the series begins to blow up for n~104. The arguments for this do not con-
stitute a proof. We then study the radiative corrections to the decays x -+ eu and m ~ pv, which involve
a three-point function. We find that these decays cannot be discussed within the framework of current
algebra. Finally we show that a somewhat generalized version of the Tamm-Dance' approximation can
be justified if we use our results for the n-point function.

1. INTRODUCTION

S OME time ago Bjorken proposed' a method for
calculating the (virtual) asymptotic behavior of the

two-point function. This method has been very useful
in estimating the radiative corrections to P decay"
(coming from high virtual masses) as well as the electro-
magnetic mass difI'erences. ' ' In this paper we shall
generalize Bjorken's expansion to the three-point func-
tion as well as the four-point function; it is possible to
obtain general results for the n-point function also.
Such a generalization is required in order to discuss
several interesting physical problems, e.g., the EI, -Eq
mass difference (in the current-current interaction).
The main results of this paper are the following:

*Work supported in part by the U. S. Atomic Energy
Commission.' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

~E. S. Abers, R. E. Norton, and D. A. Dicus, Phys. Rev.
Letters 18, 676 (1967); E. S. Abers, D. A. Dicus, R. E. Norton,
and H. R. Quinn, Phys. Rev. 167, 1461 (1968).

g M. B. Halpern and G. Segrh, Phys. Rev. Letters 19, 611
{1967);19, 1000 (1967); G. C. Wick and B.Zumino, Phys. Letters
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In Sec. 2 we generalize the Bjorken expansion to the
three-point and the four-point functions. We also give
a method for calculating the n-point function.

In Sec. 3 we show that the results obtained in the
previous section can be used to prove the following
theorem: Assuming the ordinary current algebra, all
currents are "asymptotically conserved" in the sense
that in calculating Ward identities for the n-point
function

~ ~ ~ d'4g . . .d4g g'bgl&l+' ' '0 &On&n

X(A I~(f.,- &")

it is correct to assume that in time-ordered products

ctemj am(z ) =P (1.2)

for all n's in so far as we are only interested in the
leading terms of the n-point function. This theorem is
evidently of practical importance since it shows that
asymptotically the Ward identities allow us to express
the n-point function entirely in terms of the (n —1)-


